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Wearable Sensor-Based Multi-modal Fusion Network for
Automated Gait Dysfunction Assessment in Children with

Cerebral Palsy

Lu Tang, Xiangrui Wang, Pengfei Lian, Zhiyuan Lu, Qibin Zheng,* Xilin Yang,

Qianyuan Hu, and Hui Zheng

Gait, fundamental to human movement, becomes compromised in cerebral palsy
(CP), a childhood-onset central nervous system motor disorder. Precise
assessment of patients’ gait is crucial for tailored rehabilitation interventions.
Currently, clinical scales assessing CP gait dysfunction mostly, while valuable,
rely on subjective clinician observations. To enhance objectivity and efficiency in
CP diagnosis and rehabilitation, there is a need for more objective assessment
procedures. This study introduces a multi-modal and multi-scale feature fusion
(MMFF) framework, a new framework for automating gait dysfunction assess-
ment in children with CP. By utilizing surface electromyography and acceleration
signals recorded during children’s walking, MMFF generates a feature vector
enriched with adaptively refined feature maps, cross-mode correlations, and both
local and global information. Validation of MMFF’s effectiveness is evident
through an accomplished classification accuracy of 99.13%. The mean values for
precision, recall, and F1-score in Gross Motor Function Classification System
(GMFCS)-1, GMFCS-2, and GMFCS-3, reaching 99.00%, 99.00%, and 98.33%,
respectively, further reflect the accuracy of functional assessments at each level.
This study underscores MMFF’s potential as an objective, streamlined tool for
clinicians, promising improved gait assessment and well-informed rehabilitation
strategies for children with CP.

1. Introduction

Addressing gait motor function rehabilita-
tion in CP has always been brought into
focus by  healthcare professionals.
Accurate assessment of patients’ gait motor
function is the important premise of appro-
priate rehabilitation treatment for them.™
Nowadays, clinical scale and motion sens-
ing technology has been used to assess gait
motor dysfunction of CP. Clinical scales,
such as Gross Motor Function Measure
(GMFM) scale and Gross Motor Function
Classification System (GMFCS), have been
internationally accepted and widely used to
measure the gross motor function of chil-
dren with CP in clinical practice. The
assessment results based on gait part in
the scale can track the development of gait
motor function and assess the gait rehabil-
itation effect.”) However, GMFM and
GMFCS scales are limited to the subjective
observation of clinicians who assess
patient’s gross motor function empirically,
which may lead to distinct results of the
assessment given by different clinicians.
Therefore, a more objective and efficient
motor function assessment procedure

should be adopted for the clinical diagnosis and rehabilitation

treatment of patients with CP.

Gait is the most basic of all human movements. Cerebral palsy

Gait assessment based on motion sensing technology provides

(CP) is a central nervous system motor disorders syndrome
developed in early childhood, which typically results in motor
dysfunction, usually accompanied by gait dysfunction.!'™!

four types of gait data: spatial-temporal parameters, kinematics,
kinetics, and surface electromyography (sEMG).! More and
more recent studies focus particularly on the acquisition of
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sEMG signals in children with CP,”™'% probably due to the neu-
romuscular involvement of this disorder, indeed, strongly
advised in CP."Y To capture the features of gait behavior more
comprehensively, multisensory fusion technology has also been
applied to gait function assessment in children with CP.
Multisensory-based gait dysfunction assessment mainly focuses
on calculating predefined coefficients and parameters to analyze
gait synergetic neuromuscular control or lower limb muscle
coactivation in patients with CP; some studies also aim to gen-
erate a gait assessment score reflecting the abnormal degree of
gait.'27% However, predefined features or coefficients may not
fully model the non-stationary and non-linear SEMG signal mea-
sured in complex gait patterns, especially in patients with motor
disorders.["®!

To enhance the learning of multisensory information and
address variations in abnormal gait patterns, studies focusing
on abnormal lower limb motion analysis have employed machine
learning (ML) approaches for developing automated rehabilita-
tion devices. In the context of abnormal gait function in patients
with CP, recent ML-based approaches primarily concentrate on
gait pattern recognition, physical activity identification, and gait
phase detection. ML-based studies typically utilize wearable
sensors, such as the accelerometer, pressure sensor, and SEMG
sensor, as the means to represent the motion function in
children with CP.[*"7**! However, most ML-based approaches
rely on manual feature extraction and further feature selection
to identify the optimal feature subset for their tasks.
Consequently, ML-based approaches may introduce uncertainty
and subjectivity during the model design and training process.

Due to the significant advances in convolutional neural net-
works (CNNs) automating feature extraction through convolu-
tion on input data to derive high-level features, as compared
to the traditional manual feature extraction, CNNs automatically
update convolution kernel parameters using the gradient descent
algorithm to extract semantic information from input data,
thereby reducing subjectivity in the model training process,”
which have the potential to design an end-to-end gait assessment
system. Currently, some research related to the abnormal gait
analysis has shifted to CNNs. Chakraborty employed inertial
measurement unit (IMU) sensors to detect the abnormal gait
of CP and normal gait of typically developing (TD) children using
CNN-based model.”"! Gao et al. classified three abnormal gait
patterns and two normal gait patterns using a combined long
short-term memory and CNNs model with IMU sensor.[*”
Bajpai et al. further proposed a three-module CNNs model to
identify nine CP gait patterns, with the model input being the
knee angle collected by a motion capture system.”?) Some
CNN-based analyses of the abnormal gait function in patients
with Parkinson’s disease have also been carried out to identify
patients’ gait patterns.****) However, current CNN-based stud-
ies mentioned above focus more on the recognition of motor
activity and gait events in patients with CP and have not con-
ducted an objective assessment of gait dysfunction in patients
with CP.

Considering the limitations of clinical scales and the motion
and neuromuscular characteristic capture abilities of sensor tech-
nologies, this work proposed a novel approach for objectively
grading abnormal gait function in patients with CP, specifically,
an automatic CNN-based framework for grading gait dysfunction
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in patients with CP, for the first time. In comparison to previous
studies that employed only kinematic or physiological parame-
ters, this study innovatively combined sEMG and acceleration
(ACC) signals to construct a multi-modal CNN-based framework.
This enabled the model to learn not only neuromuscular infor-
mation during walking but also intuitive gait motion parameters.
In summary, this approach only requires patients to measure
their sSEMG and ACC signals during walking to automatically
identify the patient’s gait dysfunction level, which allows clini-
cians to further develop patients’ gait dysfunction rehabilitation
schedules.

2. Experimental Section

2.1. Subjects

This experiment recruited 12 children with CP (4.38 £2.05
years) and 5 TD children (5.92 4+ 1.54years). Table 1 shows
the details of the 17 subjects. Inclusion criteria for the children
with CP were: 1) confirmation of CP diagnosis, 2) absence of
motor impairments unrelated to CP, and 3) assurance of the abil-
ity to engage in independent or assisted activities. GMFCS levels
were assessed by three clinicians, and the evaluation results are
averaged across the grades assigned by the three clinicians,
enhancing the objectivity of the results. All patients’ guardians
signed an informed consent form before the experiment.
Experiment protocol employed in this study underwent assess-
ment and received approval from the Institutional Review

Table 1. Basic information of the subjects.

Subjects Gender? Age Cadence Stride Mode®
(years) [steps min’1] time® [s]

01 F 3.0 29 2.07 GMFCS-1
02 M 3.7 34 1.76 GMFCS-1
03 M 1.5 21 2.86 GMFCS-1
04 M 6.0 41 1.46 GMFCS-1
05 F 2.0 29 2.07 GMFCS-1
06 M 5.5 27 2.22 GMFCS-2
07 M 6.0 29 2.07 GMFCS-2
08 F 4.5 22 2.73 GMFCS-3
09 M 29 18 3.33 GMFCS-3
10 M 4.0 21 2.86 GMFCS-3
11 M 4.4 25 2.40 GMFCS-3
12 F 9.0 31 1.94 GMFCS-3
13 F 4.4 49 1.22 D

14 M 4.5 43 1.40 TD

15 M 6.0 57 1.05 TD

16 F 8.1 62 0.97 D

17 F 6.6 54 1.1 D

AThe “F” and “M” in the “Gender” column represent female and male, respectively.
B)Stride time: one gait cycle duration. “Mode: GMFCS denotes the level of the Gross
Motor Function Classification System and TD denotes the typically developing
children.
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Figure 1. The placements of the sEMG and ACC electrodes. The x-axis of
the ACC electrode is oriented horizontally from the subject’s left leg to the
right leg, the y-axis is oriented vertically downward, and the z-axis is ori-
ented in the direction of the posterior side of the leg to the anterior side.

Board of the University of Health and Rehabilitation Sciences
(Protocol Code: 2021-035).

2.2. Experimental Protocols

Subjects took at least 50 consecutive steps along a straight line at
a walking speed that felt comfortable to them, and the SEMG and
ACC signals were recorded simultaneously. The SEMG signals
were recorded from 8 muscles on each side of the lower limb:
tibialis anterior (TA), soleus (SO), lateral gastrocnemius (LG),
vastus lateralis (VL), rectus femoris (RF), semitendinosus (SE),
biceps femoris (BF), and tensor fasciae latae (TFL) for each
leg. The placement of SEMG sensors and ACC sensors is shown
in Figure 1. The sEMG signals were measured by the Ag-AgCl
electrodes. The ACC signals were acquired using two identical
3-channel triaxial ACC sensor modules. Both sSEMG and ACC
signals were recorded by the self-developed sEMG acquisition
device with 1000 Hz and 100 Hz sample rate for SEMG and
ACC signal, respectively.

3. Methods

3.1. Data Preprocessing

The effective frequency of sSEMG is mainly distributed in the
range of 10-500 Hz,*”) the noise frequency of motion artifacts
is generally concentrated in the range of 0-20 Hz, and the noise
of power frequency interference is concentrated at 50 Hz.*®!
Therefore, a 50th-order Butterworth bandpass filter from 50 to
450 Hz was employed to filter out the above noise.

Human walking movement is cyclical. In this study, a com-
plete gait period is defined as the time elapsed from one heel
strikes the ground to the same heel strikes the ground again
on the same side. Considering a gait motor abnormality in chil-
dren with CP in which the heel may not touch the ground,”?® we
defined the initial contact as a start of a gait cycle. The initial
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Figure 2. Signal preprocessing: a) presents the signal preprocessing and
the gait cycle segmentation procedure and b) describes a partial result of
(a). Note that the ACC signal in (b) is collected from y-axis.

contact causes the y-axis ACC to reach its maximum value. As
shown in Figure 2a, the peak value of the y-axis ACC was detected
and its corresponding time was recorded to segment the gait
cycle. As shown in Figure 2b, the red dots presented in the
smoothed ACC signal denote the locations of the peak values,
and the interval between two adjacent red dots is a gait cycle.
Since the peak point of ACC for some patients in GMFCS-3 level
and GMFCS-2 level may be ambiguous, this study aims to
enhance their visibility. Initially, the mean value of the ACC sig-
nal to be segmented was calculated, and then signal sections
below the mean value were rectified to match the mean value
({llustrated as ‘Rectified ACC’ in Figure 2b). Subsequently, a
50-ms sliding average smoothing filter was applied to smooth
the ACC signal, reducing interference for peak detection.

3.2. Markov Transition Field

The prevalent methods for converting 1-D SEMG signals to 2-D
include feature image and spectrogram approaches.***! Feature
images involve manually selected features, while spectro-
grams sacrifice temporal/spatial resolution.?** Alternatively,
Markov transition field (MTF) provides a time series coding
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method that captures dynamic transition properties of SEMG sig-
nals. MTF generates a transition probability matrix by dividing
signals into quantile bins and calculating transition probabilities
between states.*® It avoids the trade-off between temporal and
spatial resolution and enhances recognition capabilities of CNN
models  without subjective  hand-crafted ~ features.***”)
Consequently, MTF has found success in SEMG-based muscle
fatigue visualization and emotion recognition research.***’!
This study employed MTF to convert 1-D sEMG into its 2-D
representation. The aim of the MTF transformation is to con-
struct a matrix that represents the transition probability from
one state to another over time.*” As shown in Figure 3, the
MTF transformation contains 5 steps. Given a sEMG signal
Xixn = [%1,%2,%3, ..., %, ..., %,], first, Q quantile bins of
X1xn are identified, each bin represents a state mentioned above,
and each x; is in its corresponding bins g. Second, a Q x Q
Markov transition matrix W is calculated by computing the tran-
sitions among the Q quantile bins in the way of a first-order
Markov chain along the time axis. Each element
wy,q(j € [1,Q],w €N) of the Markov transition matrix W
(Equation (1)) represents bins g; have w, , elements followed

by an element located in g;.

Yoo Woa 0 Waga
w’]]"]z w‘hv‘b qu:qz

W= . . . (1
w‘]qug w‘h:ﬁg T qu’qQ

Third, the probability m;; that the next value of x; € ¢; is at g; is
calculated by Equation (2). And then, the MTF matrix M
(Equation (3)) can be constructed by all the m;; calculated along
the time axis. By assigning transition probabilities of g; — ¢, the
MTF matrix M encodes the multi-span transition probabilities of
the SEMG signals.

o Wg,, q;
T e Wy o Wy W )
91> 4; 92, 4; e 9> 9; to qo- 9
mijlxi € g;, %1 € g mijlxi € g;, %, € g;
mi,j\xz € g;,%1 €4 mijlx; € q;, %, € q;
M= ) ) ) 3)

mi,j\xn € g, %1 €4 miﬂxn € g, %n € g

To improve the computational efficiency, the dimensionality of
M is reduced by averaging the pixels in each non-overlapping
k x k patch of the M with a blurring kernel {137}kxk' Due to
the unequal length of each gait cycle, the K in this study varied
with the length of the gait cycle. The final size for one MTF
matrix M after the blurring kernel processing was 48 x 48.

www.advintellsyst.com

The final dataset included the MTF matrices of SEMG and the
corresponding ACC signals. Sixteen-channel sEMG was
transformed into MTF matrices, respectively, to create the
SEMG sub-dataset. ACC signals were also intercepted according
to the gait cycle nodes, forming the ACC sub-dataset.

3.3. Automated Gait Dysfunction Assessment Framework

The proposed multi-modal and multi-scale feature fusion
(MMFF) automated gait dysfunction assessment framework is
shown in Figure 4a. The aims of the MMFF model are: 1) acquir-
ing a feature map contains both the local and global information,
2) acquiring an adaptive-refined feature map, and 3) fusing fea-
ture maps with different modes, namely the SEMG-mode and the
ACC-mode (Figure 4a). The inputs to the proposed model consist
of the MTF matrices of the 16-channel SEMG signal and the tri-
axial ACC signal. Regarding the ACC input format, this study
employed bilinear interpolation to scale the original triaxial
ACC into the shape of (48 x 48 x 1). Notably, although
the ACC signals were processed for gait cycle segmentation,
the inputted ACC signals were still the raw signal to retain the
original movement information of gait. Thus, in the initial
stage of the MMFF framework (Figure 4a), Convolutional
Block Attention Module (CBAM) (Figure 4c)and ConvBN blocks
(Figure 4b)were employed to obtain adaptive-refined feature
maps with an extended receptive field. Then, ResNext architec-
ture was implemented to extract higher-level feature maps
containing global information of its inputs. Finally, the cross-
attention module was used to selectively fuse the neuromuscular
and motion information contained in the SEMG-mode and the
ACC-mode. The details of the above-mentioned modules are
described in the following subsections.

3.3.1. Convolutional Block Attention Module

To enhance the inter-channel learning capability of CNN
model, recent research has focused on integrating attention
mechanisms into CNNs to improve performance. Hu et al. pro-
posed the squeeze-and-excitation (SE) module, which captures
channel-wise attention weights to model inner-channel relation-
ships.[*! However, SE only considers interactions between chan-
nels. In contrast, Woo et al. introduced the CBAM, which
computes attention weights from both channel and spatial axes.
By incorporating CBAM into the CNN model, improved accuracy
through adaptively refined feature maps resulting from the mul-
tiplication of the feature map with adaptive attention weights was
achieved.[*” Therefore, this study embedded CBAM modules in
the MMFF framework.

As shown in Figure 4c, the input of the CBAM is an interme-
diate feature map F € RH*W the CBAM aggregate of the
1-D channel attention map M, € R®1*1, and the 2-D spatial

TR O) Constructing Calculating Constructing Blurring kernel
uan tif; b%ns Markov transition Markov transition Markov transition dimensionality
4 matrix Probability field reduction

Figure 3. Calculation procedures of MTF.
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Figure 4. The MMFF framework. a) The pipeline of the MMFF framework, where the “FC” in (a) denotes the fully connected layers, the GAP denotes the
global average pooling, sSEMG inputs were the MTF matrices of the 16-channel sEMG signals, and ACC inputs were from the left and right leg ACC signals,
b) ConvBN block, c) CBAM, d,e) two forms of the aggregated transformation, where the “256-d in” and “256-d out” denote the dimensionality of the input
and output feature map. The format of the convolution hyperparameters was: n x n Conv, k, where n x n is the convolution kernel size and k is the

number of convolution kernels.

attention map M, € RP>H*W o obtain the channel-spatial
refined feature map. To obtain the channel attention map, first,
max-pooling and average-pooling are performed on the channel
axis of the input features F to calculate the pooled 1-D feature
vectors Ff,, and F§,. Then both the Ff,, and F§,, are forwarded
to the shared multi-layer perceptron (MLP) to produce the chan-
nel attention map M (F). The equation of the channel attention
is shown as:

M (F) = 6(W1(Wo(Faax)) + W1 (Wo(Fyg))) )

Adv. Intell. Syst. 2024, 2300845 2300845 (5 of 12)

where ¢ denotes the sigmoid activation function, W, € R¢/"™C,
W, € REC/" denotes the shared weights of MLP, and r is the
reduction ratio. To obtain the spatial attention map, max-pooling
and average-pooling are performed on the spatial axis of the
input channel refined feature F’ to calculate two 2-D channel
information maps Fj,, € R™™Y and F5,, € RPHV. The
spatial attention map is computed as:

M,(F) = (77 ([Fiyesi Fivg))) Gl
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where ¢ denotes the sigmoid activation function, and the f7*7
represents a convolutional filter with the size of 7 x 7.

3.3.2. ResNext Module

This study applied the ResNext-50 architecture to extract higher-
level feature map. The ResNext architecture in this study is
shown in Table 2. ResNext was an upgraded version of the
ResNet.[*>**] Compared to the ResNet, ResNext increased the
representational power and reduced the training parameters
by replacing the bottleneck block of the ResNet with a parallel
set of bottleneck blocks termed the aggregated transformation
through the grouped convolution.
The aggregated transformation can be described as:

C
Fx) =Y Tilx) ©)
i—1

1

where 7,(x) is the i-th path neuron (Figure 4d), and C is the
number of the parallel set of bottleneck blocks termed cardinal-
ity, which is the “path” of Figure 4d and the “group” of Figure 4e.

Table 2. The model architecture of the ResNext module.

Aggregated transformation block Model architecture®

Block 1 [1x1,128
3x3,128, C=32|x3
1% 1, 256

Block 2 [1x1,256
3%3,256, C=32|x4
111,512

Block 3 [1x1,512
3x3,512, C=32|x6
111, 1024

Block 4 1x1,1024
3x3,1024, C=32|x3
1x1, 2048

AThe brackets are the shape of each aggregated transformation block and “C = 32”
denotes the grouped convolutions with 32 groups.

www.advintellsyst.com

C was set to 32 in this study, which was consistent with refer-
ence.?” The output of a parallel set of bottleneck block is

y=x+) T 7)

where y is the output and x is the input, by summing the input x
with the #(x), an aggregated transformation residual architec-
ture formed.

3.3.3. Cross-Attention Module

Our proposed model takes SEMG and ACC signals as inputs, and
their fusion approach significantly impacts the classification per-
formance. Traditional fusion methods, such as concatenation
and summation, have been commonly used for multi-mode
fusion. Previous studies utilized concatenation and summation
to fuse feature maps from sEMG and ACC signals, achieving suc-
cessful results.*>*¢) However, for fusion involving multi-mode
heterogeneous and information-imbalanced features, concatena-
tion and summation are still inadequate.*”) To address this,
cross-attention mechanism, a powerful tool for selectively
attending to relevant parts of each modality, was adopted.l**)
The cross-attention computes an attention score map represent-
ing the relevance between elements of different input branches.
By employing cross-attention, the interaction between sEMG and
ACC signals is enhanced, enabling the feature vector to capture
information from both modalities.

This study performed the 1-D multi-head cross-attention on
the SEMG and ACC data.*”! As shown in Figure 5, the inputs
of the cross-attention module are the feature map of the MTF
matrix of the SEMG signals and the feature map of the ACC sig-
nals. The SEMG-branch is called the target, and the ACC-branch
is called the source. According to Equation (8), g;, k;, and v; are
calculated, which denotes the vector of the query, key, and value,
respectively:

q; = Xtarget Wi, ki = Xsource Wkr Vi = Xsource W’ 8)
where W4, W*, and W" are three learnable weight vectors, and
i € R denotes the index of each head. The number i was set to 2

Headl
L -

L——»
SEMG branch X Head2

Headl
—>

Head2

ACC branch Xeouree Headl N

V2

L——»
Head2

Figure 5. The cross-attention module. “CAT” denotes concatenation.
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in this study. Then, the attention score vector of each head is
computed through Equation (9), and the output of each head will
be calculated as Equation (10):

2
A; = softmax ki 9)
' 4

ki

h

Bi = Aivi (10)

where k[ is the transpose of k;, h is the number of heads, and dj,
is the dimensionality of k;.

The output of the cross-attention is a concatenation of B and
the Xiyge to form a residual shortcut. The mathematical results
can be described as follows:

B = W,([Bi1]B]) (11)
CrossAttention = [xtargetHB] (12)

where W, is a learnable weight vector and B;, B, denotes the
output of each head in Figure 5. By applying the cross-attention
module, feature vectors with more representative and contextual
representations of the input data can be learned.

4. Experiments and Results

4.1. Experimental Setup

Signal prepossessing was carried out on MATLAB 2018b, and
MTF transformation and deep learning model training and test-
ing process were carried on the hardware 16 vCPU Intel(R)
Xeon(R) Platinum 8350C CPU @ 2.60GHz and software
Pycharm with the Keras 2.5.0 library. Especially, the deep learn-
ing model was computed on the RTX 3090 (24 GB). The batch
size for the training and testing was set to 8 and 1, respectively.
The training epoch was set to 100, and the Adam was chosen as
the optimizer for the stage of training. The learning rate was ini-
tialized to 0.001 and scheduled to be reduced after 50, 65, 80, and
90 epochs. This study assigned 10 subjects (3 from GMFCS-1, 1
from GMFCS-2, 3 from GMFCS-3, and 3 from TD children) to
the training set, 4 subjects (selecting one participant from each
class who differed from the training and testing sets) to the vali-
dation set, and 4 subjects (selecting one participant from each

www.advintellsyst.com

class who differed from the training and validation sets) to
the testing set. Due to the limited number of subjects at
GMFCS-2 level, only two individuals were available for this
category. Therefore, data from one subject at GMFCS-2 level,
collected from distinct trials on different dates, were assigned
to the training and validation sets, respectively. Meanwhile, data
from another subject at GMFCS-2 level were designated for the
testing set, thus to avoid the problem from data leakage.

4.2. Automated Gait Dysfunction Assessment Results

The proposed MMFF framework achieved an overall accuracy of
99.13% on the testing set for automating gait dysfunction. To
clearly depict the convergence in the model training process,
Figure 6 illustrates the accuracy, loss curves, and the learning
rate curve for both the training and validation sets. As depicted
in Figure 6, after 60 epochs, the accuracy and loss curves for both
the training and validation sets gradually stabilized, which
indicated that our model had converged.

4.3. Comparison of Different Bins of the MTF

Different bins lead to different dynamical transition statistics
representation. Wang et al. recommended larger bins since
the larger bins provide a more detailed transition statistics repre-
sentation.*”! In this section, the bins were set to {4, 8, 16, 32},
5o as to explore the best classification performance. As shown in
Table 3, the increase of bins from 4 to 16 corresponded to an
improvement in classification performance, rising from
97.69% to 99.13%. However, with a subsequent increase in
the number of bins to 32, a discernible degradation in classifica-
tion accuracy occurred, specifically resulting in a decline to

Table 3. Accuracies and loss values of the test dataset.

Bins Accuracy [%] Test loss
04 97.69 0.1118
08 98.27 0.1106
16 99.13% 0.0558%
32 95.95 0.2439

#Bold indicates the best result.

(a) Training and Validation Accuracy (b) Training and Validation Loss (C) Learning Rate During the Training Process
10 16 — Training Loss 0.0020 —— Learning Rate
~—— Validation Loss
09 14
0.0008
08 12
Q
3
T o7 10 & 00006
© "
3 8 s 2
o 06 - 1 [
< [ 6 | | 5 0.0004
05 | 3
( 4
0.4 | 0.0002
| —— Training Accuracy 2 ’
0.3 | —— Validation Accuracy o e S, 0.0000
o 20 40 60 80 100 o 20 40 60 80 100 o 20 40 60 80 100
Epoch Epoch Epoch

Figure 6. Convergence changes during the training process. a) Training and validation accuracy curve. b) Training and validation loss curve. c) Learning

rate reduction curve.
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Table 4. The evaluation metrics values of each bin.

www.advintellsyst.com

GMFCS-1 GMFCS-2 GMFCS-3 Typically developing
Bins 04 08 16 32 04 08 16 32 04 08 16 32 04 08 16 32
Precision 0.96 0.97 0.98 0.96 0.98 0.97 1.00 0.95 0.97 0.99 0.99 0.93 1.00 1.00 1.00 0.99
Recall 0.99 0.99 1.00 0.96 0.97 0.98 0.98 0.95 0.95 0.96 0.98 0.92 1.00 1.00 1.00 1.00
F1-score 0.97 0.98 0.99 0.96 0.97 0.98 0.99 0.95 0.96 0.97 0.98 0.93 1.00 1.00 1.00 0.99
Average 0.97 0.98 0.99% 0.96 0.97 0.97 0.99% 0.95 0.96 0.97 0.989 0.93 1.00 1.00 1.00 0.99

Bold indicates the best result.

95.95%. To show the classification performance of each GMFCS
level and TD children more intuitively, the precision, recall, and
F1-score were employed as the evaluation metrics. As shown in
Table 4, for the classification of the children with CP, Bins16
achieved the best performance, the averaged metrics of
Bins16 were all the highest in each class. Moreover, for the eval-
uation metrics, values of the TD children were all greater than
0.99, whereas, each of the evaluation metrics of Bins32 was
the lowest in each class. In general, Bins16 preformed the best
among the four bins.

4.4. The Effectiveness of CBAM
As a lightweight channel-spatial attention module, CBAM pro-

duced an adaptive-refined feature map to improve the classifica-
tion performance. The effectiveness of CBAM was examined by

(a)

100% -

99.13%
97.98%
99.25%
98.00%
99.00%
98.00%
99.00%
97.75%

95%

90% -1

85%

80% =

Accuracy Precision Recall F1-score

BN MHFF B With SE
(c)
100%
95%-
90%-

85%

80% =

Accuracy Precision Recall

= Multi-scale Fusion

B Without CBAM

omitting it from the MMFF model and replacing it with the SE
module, facilitating a comparative analysis of their contributions.
As shown in Figure 7a, the model with CBAM reached the best
results among four evaluation metrics, namely the accuracy, pre-
cision, recall, and F1-score. When removing the CBAM, the accu-
racy was reduced from 99.13% to a minimum 94.22%, and the
precision, recall, and F1-score were also declined from 99.25%,
99.00%, and 99.00% to 94.00%, 94.50%, and 94.25%, respec-
tively. Additionally, when the CBAM was replaced by the SE
module, the accuracy, precision, recall, and Fl-score were
decreased slightly to 97.98%, 98.00%, 98.00%, and 97.75%,
respectively. We also applied the t-SNE visualization technique
to visualize the features extracted by the latest FC layer.>
Figure 8a—c depicts visualizations of the proposed MMFF model,
the model incorporating the SE module, and the model with the
CBAM module removed, respectively. As we can see the three

a & . B g
NS X e 2 o X T e X

100%- 8 55 &%k &2z 253
& RN "2 nog
X = - £ = g =

95%

90%

85%

80% —

Accuracy Precision Recall F1-score

E3 Cross Attention EE SUM E3 CAT

F1-score

Bl Single-scale Fusion

Figure 7. The evaluation metrics of the compared models. a) Comparison of the classification performance among the model with and without CBAM
and the model with SE module. b) Performance comparison of the multi-mode fusion strategies. “SUM” denotes “summation” and “CAT” denotes
“concatenation”. c) Performance of the multi-scale feature fusion and the single-scale feature fusion strategies. Precision, recall, and F1-score were

averaged across the three classes.
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Figure 8. The t-SNE visualization of the compared models on the testing dataset: a) proposed MMFF model, b) model with SE module, c) model
removed the CBAM, d) cross-attention module replaced by the summation fusion, e) cross-attention module replaced by the concatenation fusion,

and f) single-scale feature fusion.

models all have good discrimination, but a bunch of the features
of the GMFCS3 in the model without CBAM was misclassified
into the GMFCS1 cluster. These results were consistent with
tendency of Figure 7a.

4.5. Comparison of Different Fusion Strategies

Cross-attention mechanism is more suitable for the multi-mode
information fusion tasks than the simple summation and concat-
enation. In Figure 7b, substituting cross-attention module in
MHFF framework with summation led to a reduction in accu-
racy, precision, recall, and Fl-score to 96.82%, 96.75%,
96.50%, and 96.50%, respectively. Meanwhile, adopting the con-
catenation approach resulted in a decrease to 97.11%, 97.25%,
97.00%, and 97.00%. These findings underscored the superior
classification performance of cross-attention, while highlighting
the comparatively poorer performance of summation and concat-
enation fusion strategies.

Moreover, to fuse feature vectors containing local and global
information, before the cross-attention module, the global
average pooling (GAP) was implemented to compute the 1-D
representation of the 2-D feature map. As shown in
Figure 4a, the GAP1 of both the SEMG-branch and the ACC-
branch represented the feature vector with local information.
After the feature maps pass through the ResNext module, the
receptive field of the feature map increased. Thus, the GAP2
of both the sEMG-branch and the ACC-branch represented
the feature vector with global information. This study fused
the two vectors of each mode to improve the classification

Adv. Intell. Syst. 2024, 2300845 2300845 (9 of 12)

performance. In Figure 7c, our proposed multi-scale feature
fusion strategy underwent a comprehensive evaluation against
the single-scale feature fusion approach. Comparative analysis
of accuracy, precision, recall, and Fl-score between multi-scale
and single-scale feature fusion revealed a decrease in the latter
to 95.09%, 95.00%, 95.00%, and 94.75%, respectively. These
results clearly demonstrated that the multi-scale fusion strategy
outperformed the single-scale fusion across all evaluation
metrics, which suggested that our feature map contains richer
information, contributing to enhanced performance.

5. Discussions

5.1. Discussions on the Related Work

This study automated the gait dysfunction assessment process in
children with CP using a multi-modal CNN-based network. To
highlight practical applications, related studies in patients with
CP have been summarized in Table 5. In most studies, research-
ers primarily focused on gait activity recognition and gait phase
detection.!®!”~"" Regarding gait dysfunction severity evaluation,
ref. [21] detected only abnormal and normal gait. In comparison,
this study expanded the classes to include normal gait and spe-
cific gait dysfunction levels, namely GMFCS-1, GMFCS-2, and
GMFCS-3. More detailed expansion aids clinicians in developing
more precise gait dysfunction rehabilitation schedules for
patients. Ref. [51] estimated gait deviation severities based on
the Edinburgh Visual Scale (EVS) and estimated severities from
Observation 1 to 7, which represented different gait pathological
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Table 5. Comparing other wearable sensor-based research in patients with CP.

Authors Application Sensor Number of subjects ML method Accuracy
Mancinelli®" Classifying the gait ActiveGait system with 15 insole sensors 11 children with CP RF >80%
deviation severities and one ankle angle sensor
Chakraborty?" Gait abnormality Inertial sensors 9 CP diagnosed children and 9 CNNs 96.4% and 90.97% for
detection healthy children segment-wise and subject-wise
Hegde!'”! Physical activity 5 FSR sensors and a 3-D 10 children with CP and 11 MLD 95.3% for children with CP and
recognition accelerometer healthy children 96.2% for healthy children
Ahmadil'® Physical activity sEMG sensors 22 children and adolescents RF, SVM, SVM (82.0-89.0%), RF
recognition with CP BDT (82.6-88.8%), and
BDT (76.1-86.29%)
Weil'®! Gait phase recognition sEMG sensors 10 children with CP SVM 89.40%
Morbidonil® Gait phase prediction Foot-floor-contact and sEMG sensor 20 children with CP SVM, RF, MAE, 14.8 £3.2 ms for HS and
KNN, MLP 17.6 £ 4.2 ms for TO
Ours Automated gait sEMG and ACC sensor 12 children with CP and 5 TD CNNs 99.13%

dysfunction assessment

children

features, in the EVS, with accuracies exceeding 80%. Similarly,
this study classified different gait abnormal severities. As shown
in Table 4, results under Bins16 of the MTF matrix consistently
exceeded 98.00% for each GMFCS level and TD control. These
findings indicate that the proposed multimodal CNN-based
framework has significant potential to contribute to auxiliary
diagnostic devices for gait dysfunction assessment in children
with CP.

5.2. Effect of the MTF Bins

The larger the number of bins, the more detailed the MTF con-
tains the dynamic transition probability of the SEMG. However,
as shown in Table 3, when the number of bins increased to 32,
the classification accuracy decreased from 99.13% of the Bins16
t0 95.95% of the Bins32, this was due to the increased sparsity of
the input data. When the number of bins increased, the transi-
tion probability from one state to another may be 0 because some
of the bins may have very small or no instances of transitions,
which resulted in the increase of the sparsity of the MTF matrix,
leading to instability during the model training process.

5.3. Approaches of the Multi-Modal Fusion

The concatenation and summation are the most commonly used
approaches for the multi-mode fusion tasks, which fuse the out-
put of the SEMG-branch and the ACC-branch (Figure 4a) into a
single feature vector or matrix by a simple combination. In con-
trast, the cross-attention mechanism allows the model to selec-
tively attend to the most relevant parts of each mode, which has
more interactions between the sSEMG and ACC signals when fus-
ing the two different modes. As shown in Figure 7b, the results
of the comparison of the cross-attention and the simple concate-
nation and summation were consistent with the discussions
above. Specifically, the cross-attention reached the highest accu-
racy 99.13%, while the simple concatenation and summation
reached 97.11% and 96.82%, respectively. Results indicated that
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the cross-attention integrated the sSEMG and ACC information in
a more fine-grained way than concatenation and summation.

5.4. Effect of the Multi-Scale Fusion

In our investigation, feature maps with distinct information
scopes were analyzed. Specifically, feature maps with local infor-
mation focused on recognizing fine-grained patterns within
smaller regions of the input images. On the other hand, feature
maps with global information exhibited a broader receptive field,
allowing them to capture larger-scale patterns contain in the
input images. The proposed multi-scale fusion strategy fused
the global and local information in one feature vector. Thus,
the model learns to recognize a broader range of the patterns
and features contained in the SEMG and ACC inputs by supple-
menting local information with global information. This work
compared the multi-scale fusion and single-scale fusion strategy.
After removing the blue arrows in Figure 4a, the multi-scale
fusion was transformed into the single-scale fusion. As a result,
the local information of the feature vector was reduced, and the
classification accuracy decreased from 99.13% to 95.09%
(Figure 7c). In short, a feature with both local and global infor-
mation improves the classification accuracy.

6. Conclusion

This study introduced a novel MMFF framework for automating
the assessment of gait dysfunction in children with CP, stream-
lining the GMFCS assessment process. Leveraging sEMG and
ACC signals recorded during the children’s walking, MMFF uti-
lized CBAM to obtain the adaptively refined feature maps from
both channel and spatial axes. Additionally, it incorporated a
cross-attention module to acquire cross-mode correlations, so
as to selectively obtain a feature vector containing both sEMG
and ACC information. The MMFF framework further integrated
a multi-scale fusion strategy to extract a feature vector enriched
with both local and global information. The classification accu-
racy reached 99.13%, while the mean values for model evaluation
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metrics, including precision, recall, and F1-score in GMFCS-1,
GMFCS-2, and GMFCS-3, were 99.00%, 99.00%, and 98.33%,
respectively. These results served as a validation for the effective-
ness of MMFF. Results affirmed its potential as an objective,
lightweight tool for clinicians to assess gait function and inform
rehabilitation strategies for children with CP. While this work
concentrated on gait motor dysfunction, future works aim to
extend the automated assessment approach to lower limb motor
dysfunction in children with CP.
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